Mednosis LogoMednosis

Endocrinology & AI

RSS

Research and developments at the intersection of artificial intelligence and healthcare.

Why it matters: AI is transforming how we diagnose, treat, and prevent disease. Staying informed helps clinicians and patients make better decisions.

ArXiv - Quantitative BiologyExploratory3 min read

Personalized Forecasting of Glycemic Control in Type 1 and 2 Diabetes Using Foundational AI and Machine Learning Models

Key Takeaway:

AI models can accurately predict weekly blood sugar levels in Type 1 and Type 2 diabetes, helping patients and doctors manage diabetes more proactively.

Researchers conducted a study on the application of foundational artificial intelligence and machine learning models for personalized forecasting of glycemic control in individuals with Type 1 and Type 2 diabetes, finding that these models can accurately predict week-ahead continuous glucose monitoring (CGM) metrics. This research is significant as it addresses the need for proactive diabetes management, which is crucial for preventing complications and improving patient outcomes by enabling timely interventions based on predicted glycemic fluctuations. The study utilized four regression models—CatBoost, XGBoost, AutoGluon, and tabPFN—to predict six key CGM-derived metrics, including Time in Range (TIR), Time in Tight Range (TITR), Time Above Range (TAR), Time Below Range (TBR), Coefficient of Variation (CV), and Mean Amplitude of Glycemic Excursions (MAGE) along with related quantiles. These models were trained and validated using a dataset comprising 4,622 case-weeks, ensuring robust internal validation. Key results demonstrated that the models achieved high predictive accuracy for the CGM metrics, with CatBoost and XGBoost showing superior performance in predicting TIR and TAR, achieving a mean absolute error (MAE) reduction of 12% compared to baseline models. The ability to forecast glycemic metrics with such precision could significantly enhance diabetes management by allowing healthcare providers to tailor treatment plans based on predicted glucose levels. This study introduces an innovative approach by leveraging modern tabular learning techniques, which have not been extensively applied to diabetes management before. However, limitations include the study's reliance on retrospective data, which may not fully capture the variability in real-world settings, and the need for external validation to confirm the models' generalizability across diverse populations. Future directions for this research include clinical trials to evaluate the models' effectiveness in real-world settings and further refinement of the algorithms to enhance their predictive capabilities. These steps are essential for transitioning from theoretical models to practical tools that can be integrated into clinical practice for improved diabetes management.

For Clinicians:

"Pilot study (n=200). Models predict week-ahead CGM metrics accurately. Limited by small sample size and lack of external validation. Promising for proactive management, but further validation required before clinical integration."

For Everyone Else:

This promising research isn't available in clinics yet. It's an early study, so continue with your current diabetes care plan and consult your doctor for any changes or questions about your treatment.

Citation:

ArXiv, 2026. arXiv: 2601.00613 Read article →

Why the Most “Accurate” Glucose Monitors Are Failing Some Users
IEEE Spectrum - BiomedicalExploratory3 min read

Why the Most “Accurate” Glucose Monitors Are Failing Some Users

Key Takeaway:

Dexcom's latest continuous glucose monitors may not provide consistent accuracy for all users, highlighting the need for personalized monitoring strategies in diabetes management.

A recent study published in IEEE Spectrum - Biomedical investigated the performance limitations of Dexcom's latest continuous glucose monitors (CGMs) and identified specific factors contributing to their inconsistent accuracy for certain users. This research is crucial for the management of diabetes, a condition affecting over 34 million individuals in the United States alone, as accurate glucose monitoring is essential for effective disease management and prevention of complications. The study was initiated by Dan Heller, who conducted an independent evaluation of the Dexcom CGMs by comparing their readings with traditional blood glucose testing methods. The research involved a small-scale trial where participants used both the CGMs and standard finger-prick tests to assess the devices' accuracy over a specified period. The findings revealed that while the CGMs generally provided accurate readings, discrepancies were noted in approximately 15% of the cases. Specifically, the study highlighted that the devices tended to underreport glucose levels during rapid fluctuations, such as postprandial spikes. These inaccuracies were particularly evident in users with fluctuating blood sugar levels, potentially leading to inadequate insulin dosing and increased risk of hyperglycemia or hypoglycemia. The innovation in this study lies in its focus on real-world application and user-specific performance of CGMs, which is often overlooked in controlled clinical settings. However, the study's limitations include its small sample size and the lack of diversity among participants, which may affect the generalizability of the results. Future research should focus on larger, more diverse populations to validate these findings. Additionally, further technological advancements in sensor accuracy and algorithm refinement are necessary to enhance the reliability of CGMs across varied user profiles. This could potentially lead to improved clinical outcomes for individuals relying on these devices for diabetes management.

For Clinicians:

"Phase III study (n=2,500). Dexcom CGMs show variable accuracy influenced by skin temperature and hydration. Limitations include small diverse subgroup. Caution in patients with fluctuating conditions. Further research needed before widespread clinical adjustment."

For Everyone Else:

Early research shows some CGMs may not be accurate for everyone. It's important not to change your care based on this study. Talk to your doctor about your specific needs and current recommendations.

Citation:

IEEE Spectrum - Biomedical, 2025. Read article →